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The Bartlett mechanism has been widely used to rationalize the 
results of olefin epoxidations by peroxides, and this determination 
of the disposition of the atoms in the transition structure can be 
reasonably extended to related oxygen-transfer reactions. 
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Helical structures are ubiquitous in nature and are essential 
to life itself (e.g., polypeptides and nucleic acids). In recent years 
chemists have discovered several metal-ligand combinations that 
lead to spontaneous assembly of multicomponent helical and 
double-helical structures.1 In this communication, we report the 
first examples of a new class of preorganized, monohelical poly-
pyridine ligands. These "molecular coils" composed of fused 
six-membered rings wrap around guest ions, forming helical 1:1 
complexes. Helicenes2 such as [6]helicene (2) consist only of 
angularly fused rings; their ideal, planar analogue is coronene (1). 
Combination of angular with linear fusion of benzene rings leads 
to planar cycloarenes3 (e.g., kekulene, 3) and conceptually to 
unknown, "expanded" carbocyclic helicenes, such as 4. Re-
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Figure 2. UV-visible absorption spectra of 12 and 12-Na+. 

placement of internal C-H groups in cycloarenes with heteroatoms 
gives torands,4 such as 5,4^'5 which tightly bind alkali metals.4* 

Both of the new "expanded" heterohelicenes (6 and 12) were 
synthesized from 9-n-butyl-2,3,5,6,7,8-hexahydro-4(l#)-
acridinone (7) and 5-benzylidene-9-n-butyl-2,3,5,6,7,8-hexa-
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hydro-4( 1 W)-acridinone (8) by variations of previously reported 
methods4b'd'e (Figure 1). These intermediates were synthesized 
in several steps from cyclohexanone and valeraldehyde by pub­
lished methods.4b'd'e'6 Ketone 8 was converted to enone 9 by a 
new coupling procedure7 using dimethylmethyleneammonium 
chloride. Reaction of ketone 7 with enone 9 gave unsymmetrical 
heptacyclic terpyridyl 10.9 Ozonolytic cleavage of the benzylidene 
group in 10 gave heptacyclic ketone ll,9 the key intermediate for 
synthesis of expanded heterohelicenes. Homologation of 11 by 
reaction with ammonium acetate and 9 and chromatography of 
the crude product on basic alumina gave free ligand 12 (22%)9 

and a later fraction, which proved to be a sodium complex 
(12-Na+).10 Reaction of 11 with Bredereck's reagent11 gave 
(3-dimethylamino enone 13, which was coupled with 11 by the 
method of Firestone.12 Chromatography on basic alumina again 
gave two fractions, apparently containing free ligand 6 and 6-
Na+.13 

Geminal protons of 6 and 12 become diastereotopic when their 
enantiomeric helical conformations interconvert slowly. In free 
host 12 various methylene groups are observed as distinct two-
proton multiplets in the 600-MHz 1H NMR spectrum, indicating 
that helix inversion is rapid on the NMR time scale. The 1H 
NMR spectrum of 12-NaCF3SO3, prepared by treatment of 12 
with sodium triflate in methanol, shows broadened CH2 peaks due 
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(M + 23). 

to slow helix inversion; the benzylidene peak remains sharp but 
is shifted upfield by 2.0 ppm. These results show not only that 
helix inversion is slow in 12-Na+ but also that complexation alters 
the helix conformation. Figure 2 shows that a large bathochromic 
shift of the longest wavelength UV absorption also occurs upon 
binding sodium. 

We conclude that expanded helix 12 consists of rapidly in-
terconverting enantiomers in solution; complexation of sodium 
increases the barrier to helix inversion. This potentially useful 
conformational change and the resulting optical response are more 
extreme than those observed in expanded systems comprising less 
than one full turn of a helix.4" Complexation and conformational 
properties of 6 are currently under investigation.14 
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We report here the preliminary investigation of traveling fronts 
in methacrylic acid polymerization in unstirred solutions of the 
monomer and benzoyl peroxide, with and without a promoter. 

An autocatalytic reaction in an unstirred vessel can support 
a constant-velocity wave front resulting from the coupling of 
diffusion to the chemical reaction. Numerous reactions in solution 
have been described in which a front of chemical reactivity 
propagates through the medium from the site of an initial con­
centration perturbation.1"11 Traveling wave fronts in populations 
of short self-replicating RNA variants have been created in thin 
capillary tubes,12 but fronts have not been studied in synthetic 
polymerization reactions. We have set out to do so in an attempt 
to observe ultimately the sorts of nonlinear propagation phenomena 
seen in solid-fuel, gasless combustion such as pulsating and 
spinning fronts.13"15 

Coupling the exothermic addition polymerization of methacrylic 
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